Oracle Cloud Infrastructure v2.31.0 published on Thursday, Apr 17, 2025 by Pulumi
oci.AiVision.getModels
Explore with Pulumi AI
This data source provides the list of Models in Oracle Cloud Infrastructure Ai Vision service.
Returns a list of Models.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModels = oci.AiVision.getModels({
    compartmentId: compartmentId,
    displayName: modelDisplayName,
    id: modelId,
    projectId: testProject.id,
    state: modelState,
});
import pulumi
import pulumi_oci as oci
test_models = oci.AiVision.get_models(compartment_id=compartment_id,
    display_name=model_display_name,
    id=model_id,
    project_id=test_project["id"],
    state=model_state)
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aivision"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aivision.GetModels(ctx, &aivision.GetModelsArgs{
			CompartmentId: pulumi.StringRef(compartmentId),
			DisplayName:   pulumi.StringRef(modelDisplayName),
			Id:            pulumi.StringRef(modelId),
			ProjectId:     pulumi.StringRef(testProject.Id),
			State:         pulumi.StringRef(modelState),
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModels = Oci.AiVision.GetModels.Invoke(new()
    {
        CompartmentId = compartmentId,
        DisplayName = modelDisplayName,
        Id = modelId,
        ProjectId = testProject.Id,
        State = modelState,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModels = AiVisionFunctions.getModels(GetModelsArgs.builder()
            .compartmentId(compartmentId)
            .displayName(modelDisplayName)
            .id(modelId)
            .projectId(testProject.id())
            .state(modelState)
            .build());
    }
}
variables:
  testModels:
    fn::invoke:
      function: oci:AiVision:getModels
      arguments:
        compartmentId: ${compartmentId}
        displayName: ${modelDisplayName}
        id: ${modelId}
        projectId: ${testProject.id}
        state: ${modelState}
Using getModels
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModels(args: GetModelsArgs, opts?: InvokeOptions): Promise<GetModelsResult>
function getModelsOutput(args: GetModelsOutputArgs, opts?: InvokeOptions): Output<GetModelsResult>def get_models(compartment_id: Optional[str] = None,
               display_name: Optional[str] = None,
               filters: Optional[Sequence[_aivision.GetModelsFilter]] = None,
               id: Optional[str] = None,
               project_id: Optional[str] = None,
               state: Optional[str] = None,
               opts: Optional[InvokeOptions] = None) -> GetModelsResult
def get_models_output(compartment_id: Optional[pulumi.Input[str]] = None,
               display_name: Optional[pulumi.Input[str]] = None,
               filters: Optional[pulumi.Input[Sequence[pulumi.Input[_aivision.GetModelsFilterArgs]]]] = None,
               id: Optional[pulumi.Input[str]] = None,
               project_id: Optional[pulumi.Input[str]] = None,
               state: Optional[pulumi.Input[str]] = None,
               opts: Optional[InvokeOptions] = None) -> Output[GetModelsResult]func GetModels(ctx *Context, args *GetModelsArgs, opts ...InvokeOption) (*GetModelsResult, error)
func GetModelsOutput(ctx *Context, args *GetModelsOutputArgs, opts ...InvokeOption) GetModelsResultOutput> Note: This function is named GetModels in the Go SDK.
public static class GetModels 
{
    public static Task<GetModelsResult> InvokeAsync(GetModelsArgs args, InvokeOptions? opts = null)
    public static Output<GetModelsResult> Invoke(GetModelsInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
public static Output<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiVision/getModels:getModels
  arguments:
    # arguments dictionaryThe following arguments are supported:
- CompartmentId string
- The ID of the compartment in which to list resources.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Filters
List<GetModels Filter> 
- Id string
- unique Model identifier
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- CompartmentId string
- The ID of the compartment in which to list resources.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Filters
[]GetModels Filter 
- Id string
- unique Model identifier
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartmentId String
- The ID of the compartment in which to list resources.
- displayName String
- A filter to return only resources that match the entire display name given.
- filters
List<GetModels Filter> 
- id String
- unique Model identifier
- projectId String
- The ID of the project for which to list the objects.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartmentId string
- The ID of the compartment in which to list resources.
- displayName string
- A filter to return only resources that match the entire display name given.
- filters
GetModels Filter[] 
- id string
- unique Model identifier
- projectId string
- The ID of the project for which to list the objects.
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartment_id str
- The ID of the compartment in which to list resources.
- display_name str
- A filter to return only resources that match the entire display name given.
- filters
Sequence[aivision.Get Models Filter] 
- id str
- unique Model identifier
- project_id str
- The ID of the project for which to list the objects.
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- compartmentId String
- The ID of the compartment in which to list resources.
- displayName String
- A filter to return only resources that match the entire display name given.
- filters List<Property Map>
- id String
- unique Model identifier
- projectId String
- The ID of the project for which to list the objects.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
getModels Result
The following output properties are available:
- ModelCollections List<GetModels Model Collection> 
- The list of model_collection.
- CompartmentId string
- Compartment Identifier
- DisplayName string
- Model Identifier, can be renamed
- Filters
List<GetModels Filter> 
- Id string
- Unique identifier that is immutable on creation
- ProjectId string
- The OCID of the project to associate with the model.
- State string
- The current state of the Model.
- ModelCollections []GetModels Model Collection 
- The list of model_collection.
- CompartmentId string
- Compartment Identifier
- DisplayName string
- Model Identifier, can be renamed
- Filters
[]GetModels Filter 
- Id string
- Unique identifier that is immutable on creation
- ProjectId string
- The OCID of the project to associate with the model.
- State string
- The current state of the Model.
- modelCollections List<GetModels Model Collection> 
- The list of model_collection.
- compartmentId String
- Compartment Identifier
- displayName String
- Model Identifier, can be renamed
- filters
List<GetModels Filter> 
- id String
- Unique identifier that is immutable on creation
- projectId String
- The OCID of the project to associate with the model.
- state String
- The current state of the Model.
- modelCollections GetModels Model Collection[] 
- The list of model_collection.
- compartmentId string
- Compartment Identifier
- displayName string
- Model Identifier, can be renamed
- filters
GetModels Filter[] 
- id string
- Unique identifier that is immutable on creation
- projectId string
- The OCID of the project to associate with the model.
- state string
- The current state of the Model.
- model_collections Sequence[aivision.Get Models Model Collection] 
- The list of model_collection.
- compartment_id str
- Compartment Identifier
- display_name str
- Model Identifier, can be renamed
- filters
Sequence[aivision.Get Models Filter] 
- id str
- Unique identifier that is immutable on creation
- project_id str
- The OCID of the project to associate with the model.
- state str
- The current state of the Model.
- modelCollections List<Property Map>
- The list of model_collection.
- compartmentId String
- Compartment Identifier
- displayName String
- Model Identifier, can be renamed
- filters List<Property Map>
- id String
- Unique identifier that is immutable on creation
- projectId String
- The OCID of the project to associate with the model.
- state String
- The current state of the Model.
Supporting Types
GetModelsFilter  
GetModelsModelCollection   
GetModelsModelCollectionItem    
- AveragePrecision double
- Average precision of the trained model
- CompartmentId string
- The ID of the compartment in which to list resources.
- ConfidenceThreshold double
- Confidence ratio of the calculation
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Dictionary<string, string>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- Id string
- unique Model identifier
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining doubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelType string
- Type of the Model.
- ModelVersion string
- The version of the model
- Precision double
- Precision of the trained model
- ProjectId string
- The ID of the project for which to list the objects.
- Recall double
- Recall of the trained model
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDatasets List<GetModels Model Collection Item Testing Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration doubleIn Hours 
- Total hours actually used for training
- TrainingDatasets List<GetModels Model Collection Item Training Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDatasets List<GetModels Model Collection Item Validation Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- AveragePrecision float64
- Average precision of the trained model
- CompartmentId string
- The ID of the compartment in which to list resources.
- ConfidenceThreshold float64
- Confidence ratio of the calculation
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- map[string]string
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- Id string
- unique Model identifier
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining float64Duration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelType string
- Type of the Model.
- ModelVersion string
- The version of the model
- Precision float64
- Precision of the trained model
- ProjectId string
- The ID of the project for which to list the objects.
- Recall float64
- Recall of the trained model
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDatasets []GetModels Model Collection Item Testing Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration float64In Hours 
- Total hours actually used for training
- TrainingDatasets []GetModels Model Collection Item Training Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDatasets []GetModels Model Collection Item Validation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Double
- Average precision of the trained model
- compartmentId String
- The ID of the compartment in which to list resources.
- confidenceThreshold Double
- Confidence ratio of the calculation
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- displayName String
- A filter to return only resources that match the entire display name given.
- Map<String,String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id String
- unique Model identifier
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining DoubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelType String
- Type of the Model.
- modelVersion String
- The version of the model
- precision Double
- Precision of the trained model
- projectId String
- The ID of the project for which to list the objects.
- recall Double
- Recall of the trained model
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage IntegerCount 
- Total number of testing Images
- testingDatasets List<GetModels Model Collection Item Testing Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage IntegerCount 
- Total number of training Images
- trainedDuration DoubleIn Hours 
- Total hours actually used for training
- trainingDatasets List<GetModels Model Collection Item Training Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets List<GetModels Model Collection Item Validation Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision number
- Average precision of the trained model
- compartmentId string
- The ID of the compartment in which to list resources.
- confidenceThreshold number
- Confidence ratio of the calculation
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- A short description of the model.
- displayName string
- A filter to return only resources that match the entire display name given.
- {[key: string]: string}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id string
- unique Model identifier
- isQuick booleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining numberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- modelType string
- Type of the Model.
- modelVersion string
- The version of the model
- precision number
- Precision of the trained model
- projectId string
- The ID of the project for which to list the objects.
- recall number
- Recall of the trained model
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage numberCount 
- Total number of testing Images
- testingDatasets GetModels Model Collection Item Testing Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage numberCount 
- Total number of training Images
- trainedDuration numberIn Hours 
- Total hours actually used for training
- trainingDatasets GetModels Model Collection Item Training Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets GetModels Model Collection Item Validation Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- average_precision float
- Average precision of the trained model
- compartment_id str
- The ID of the compartment in which to list resources.
- confidence_threshold float
- Confidence ratio of the calculation
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- A short description of the model.
- display_name str
- A filter to return only resources that match the entire display name given.
- Mapping[str, str]
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id str
- unique Model identifier
- is_quick_ boolmode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_training_ floatduration_ in_ hours 
- The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_type str
- Type of the Model.
- model_version str
- The version of the model
- precision float
- Precision of the trained model
- project_id str
- The ID of the project for which to list the objects.
- recall float
- Recall of the trained model
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- test_image_ intcount 
- Total number of testing Images
- testing_datasets Sequence[aivision.Get Models Model Collection Item Testing Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- time_created str
- The time the Model was created. An RFC3339 formatted datetime string
- time_updated str
- The time the Model was updated. An RFC3339 formatted datetime string
- total_image_ intcount 
- Total number of training Images
- trained_duration_ floatin_ hours 
- Total hours actually used for training
- training_datasets Sequence[aivision.Get Models Model Collection Item Training Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- validation_datasets Sequence[aivision.Get Models Model Collection Item Validation Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Number
- Average precision of the trained model
- compartmentId String
- The ID of the compartment in which to list resources.
- confidenceThreshold Number
- Confidence ratio of the calculation
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- displayName String
- A filter to return only resources that match the entire display name given.
- Map<String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id String
- unique Model identifier
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining NumberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelType String
- Type of the Model.
- modelVersion String
- The version of the model
- precision Number
- Precision of the trained model
- projectId String
- The ID of the project for which to list the objects.
- recall Number
- Recall of the trained model
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage NumberCount 
- Total number of testing Images
- testingDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage NumberCount 
- Total number of training Images
- trainedDuration NumberIn Hours 
- Total hours actually used for training
- trainingDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
GetModelsModelCollectionItemTestingDataset      
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
GetModelsModelCollectionItemTrainingDataset      
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
GetModelsModelCollectionItemValidationDataset      
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.